Non-ribosomal cyanopeptides founded in Brazilian Cyanobacteria Bloom: Identification and characterization by MALDI-TOF-MS.

<u>Milena F. Luizete¹</u>(PG) e Humberto M. S. Milagre¹(PQ)*.

¹Universidade Estatual Paulista Júlio de Mesquita Filho

humbertomilagre@iq.unesp.br

Rua Prof. Francisco Degni, 55 Bairro: Quitandinha 14800-060 - Araraquara, SP

Key words: Cyanobacteria, Microcystins, Aeruginosins, Cyanopeptolin, MALDI-TOF-MS.

Abstract

Cyanobacterial bloom is a common problem in the world, there are many species that produce a huge variability of secondary metabolites, mostly oligopeptides that can be toxic or that present bioactivity. In Brazil, there is a harmful bloom of cyanobacteria in Americana, State of São Paulo. In this bloom, many kinds of non-ribosomal cyanopeptides, such as aeruginosins, cyanopeptolin and different microcystins, can be identified using MALDI-TOF-MS.

Introduction

Cyanobacteria are photosynthetic and prokaryote microorganisms that have lived on Earth for billions of years.¹ Their survival may be explained, in parts, by the enormous diversity of the secondary metabolites. Most of them are oligopeptides, called cyanopeptides, which have been ranked into seven major classes: aeruginosins, cyanopeptolins, anabaenopeptins, microginins, microviridins, ciclamides, microcystins.² Most of these compounds are produced by non-ribosomal pathways, with the exception of ciclamides and microviridins.³

An efficient technique for the analysis and characterization of different cyanopeptides present in cyanobacteria's blooms is the Matrix-Assisted Laser Desorption Ionization (MALDI-MS).⁵ This technique is extremely fast, has high resolution, does not require sample treatment, has no interference in the analysis and has low reagent consumption. For these reasons, MALDI-MS has been widely used in the detection of various types of cyanopeptides because it has high detectability and only needs small quantities of sample.⁶ Furthermore, it is able to directly identify structures of new congeners in environmental samples without the need to isolate these substances or laboratory cultivation of cyanobacteria. For these many advantages, we used MALDI-TOF-MS analysis in this study for the identification and characterization of various oligopeptides produced by cyanobacteria and different types of oligopeptides detected in a toxic bloom, in Americana, São Paulo, Brazil.

In the cyanobacterial bloom samples collected in Americana were detected m/z ion signals referring to numerous variants of microcystins, aeruginosins and cyanopeptolins. The Table 1 shows the m/z ion signals and their respective cyanopeptides. The structure of each was confirmed by experiments of high-resolution analysis by MALDI-TOF-MS.

Table 1. Cyanopeptides that were identified inAmericana- SP, Brazil.

Cyanopeptides	Theoretic a <i>l mlz</i> [M + H] ⁺	MALDI <i>mlz</i> [M+H]⁺	MALDI-MS Error(ppm)
Aeruginosin 602	603.35007	603.3510	1.54
Aeruginosin 298A	605.36572	605.3663	0.95
Aeruginosin 644	645.36064	645.3586	-3.16
Aeruginosin 646	647.37620	647.3776	2.03
Cyanopeptolin 972	973.53530	973.5425	7.39
Cyanopeptolin986A	987.55096	987.5488	-2.18
MC-LR	995.55604	995.5626	6.59
MC-HilR	1009.5300	1009.5429	7.52
MC-RR	1038.5730	1038.5757	2.51
MC-YR	1045.5353	1045.5437	8.03
Cyanopeptolin 1071	1072*	1072.6240	
Microviridin 1707	1707.75*	1707.6777	

Conclusions

In the samples collected from the cyanobacterial bloom were identified eleven non-ribosonal peptides: five congeners of hepatotoxic microcystins and eight protease inhibitors, being four aeruginosins, three cyanopeptolins and one ribosomal peptide, microviridin 1707.

Acknowledgment

We thank the Brazilian science foundations FAPESP, CAPES and CNPq for financial support.

Results and Discussion

39^ª Reunião Anual da Sociedade Brasileira de Química: Criar e Empreender

¹Metcalf, J. S., e G. A. Codd, *Nova Science*,**2009**,1. ² Welker, M., e H. von Dohren. *FEMS Microbiol Rev*,**2006**, *30*, 530-63. ³ Neilan, B. A., E. Dittmann, L. Rouhiainen, R. A. Bass, V. Schaub, K. Sivonen, e T. Borner. *J Bacteriol*, **1999**,*181*, 4089-97. ⁵ Howard, K. L., e G. L. Boyer. *Analytical Chemistry*,**2007**,*79*,5980-5986. ⁶Agha, R., e A. Quesada. *Toxins (Basel)*, **2014**, *6*, 1929-50.